Mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen.
Ein neues robustes Lasersystem des Fraunhofer- Instituts für Lasertechnologie ILT in Aachen soll dabei helfen, die Emissionen des Treibhausgases Methan auf der Erde zu erforschen. Die Daten des 2021 startenden Projekts stammen von dem deutsch-französischen Satelliten MERLIN. Das Projekt wird im Auftrag des Raumfahrtmanagements des Deutschen Zentrums für Luft-und Raumfahrt DLR durch das Bundesministerium für Wirtschaft und Energie BMWi gefördert.
Methan entsteht unter anderem bei Fäulnisprozessen und ist 25-mal wirksamer als das klimaschädliche Kohlendioxid. Bisher kam es in der Erdatmosphäre aber lange nicht so häufig vor. Doch seit einigen Jahren steigt die Methan-Konzentration. Um den Ursachen auf den Grund zu gehen, ist es wichtig zu messen, wo und in welcher Menge Methan in die Erdatmosphäre abgegeben wird. Allerdings ist eine globale Erfassung der Emissionswerte mit hoher Auflösung mit der herkömmlichen Messtechnologie nicht möglich. Satellitengestützte Systeme nutzen derzeit das Sonnenlicht, um Methan aufzuspüren. Messen kann man daher immer nur auf der sonnenzugewandten Seite der Erde und bei wolkenfreiem Himmel. Die Licht-Absorption lässt Rückschlüsse auf die Moleküle zu, die in der Luft vorhanden sind.
Das Besondere an dem laserbasierten Messsystem des ILT ist, dass es vom Sonnenlicht unabhängig ist, was eine zeitunabhängige Messung ermöglicht. „Ziel der Mission ist, den Klimawissenschaftlern genaue globale Daten zu Methanverteilungen zu liefern, mit denen sie ihre Klimamodelle füttern können. So sei es möglich, die Klimaentwicklung besser vorherzusagen“, sagt Dr. Jens Löhring, der am Fraunhofer ILT in Aachen die neue Lasertechnologie mit entwickelt. Der Laser ist in der Lage, sehr präzise Einfrequenz-Lichtpulse auf die Erde zu senden. Auch hier zeigt die Licht-Absorption, ob und in welcher Konzentration Methan vorhanden ist – im Unterschied zu den Methanmessungen mit Hilfe von Sonnenlicht allerdings wesentlich genauer. Der Laserpuls lässt sich exakt auf die Absorptionslinie von Methan bei einer vorher festgelegten Wellenlänge einstellen. „Jedes Gas hat seinen spektralen Fingerabdruck. Es absorbiert bei bestimmten Wellenlängen besonders gut oder schlecht. Dabei ist es wichtig, dass andere Gase bei dieser Wellenlänge keine Absorptionslinie haben, damit die Messung nicht verfälscht wird“, erklärt Löhring. Der neue Laser ist ein wesentlicher Bestandteil des LiDAR-Systems (Light detection and ranging) an Bord von MERLIN.
Damit der Laser im Weltall problemlos und wartungsfrei für die Missionsdauer von drei Jahren funktioniert, muss er Temperaturwechsel von minus 30 bis plus 50 Grad Celsius genauso unbeschadet überstehen wie starke Vibrationen. Eine weitere Herausforderung ist, die Luft in dem Gehäuse um den Laser rein zu halten. „Klebstoffe führen zu einer Kontamination der Luft. Winzige Teilchen lösen sich, lagern sich auf den Spiegeln ab und zerstören die Optik. Wir haben daher beim Aufbau des Lasers ausschließlich gelötet und geschraubt – das ist eine völlig neue Technik, die das System zusätzlich robust macht und daher auch für zahlreiche Anwendungen in der Industrie und Fertigungstechnik interessant ist“, erklärt Löhring.